A coagulation–fragmentation model for the turbulent growth and destruction of preplanetesimals
نویسندگان
چکیده
To treat the problem of growing protoplanetary disc solids across the meter barrier, we consider a very simplified two-component coagulation-fragmentation model that consists of macroscopic boulders and smaller dust grains, the latter being the result of catastrophic collisions between the boulders. Boulders in turn increase their radii by sweeping up the dust fragments. An analytical solution to the dynamical equations predicts that growth by coagulation-fragmentation can be efficient and allow agglomeration of 10-meter-sized objects within the time-scale of the radial drift. These results are supported by computer simulations of the motion of boulders and fragments in 3-D time-dependent magnetorotational turbulence. Allowing however the fragments to diffuse freely out of the sedimentary layer of boulders reduces the density of both boulders and fragments in the mid-plane, and thus also the growth of the boulder radius, drastically. The reason is that the turbulent diffusion time-scale is so much shorter than the collisional time-scale that dust fragments leak out of the mid-plane layer before they can be swept up by the boulders there. Our conclusion that coagulation-fragmentation is not an efficient way to grow across the meter barrier in fully turbulent protoplanetary discs confirms recent results by Brauer, Dullemond, & Henning who solved the coagulation equation in a parameterised turbulence model with collisional fragmentation, cratering, radial drift, and a range of particle sizes. We find that a relatively small population of boulders in a sedimentary mid-plane layer can populate the entire vertical extent of the disc with small grains and that these grains are not first generation dust, but have been through several agglomeration-destruction cycles during the simulations.
منابع مشابه
What Determines Size Distributions of Heavy Drops in a Synthetic Turbulent Flow?
We present results from an individual particle based model for the collision, coagulation and fragmentation of heavy drops moving in a turbulent flow. Such a model framework can help to bridge the gap between the full hydrodynamic simulation of two phase flows, which can usually only study few particles and mean field based approaches for coagulation and fragmentation which rely heavily on para...
متن کاملDestruction of Recombinant Tissue Plasminogen Activator (rtPA) -Loaded Echogenic Liposomes under Dual Frequency Sonication
Background:Echogenic liposomes (ELIPs) encapsulate drugs and gas bubbles within lipid vesicles. The destruction of ELIPs in response to MHz and kHz ultrasound waves has been studied previously. Applying ultrasound above a certain threshold causes encapsulated gas bubbles destruct rapidly by fragmentation or more slowly by acoustically driven diffusion. This study compares the d...
متن کاملCollisions of inhomogeneous pre-planetesimals
Context. In the framework of the coagulation scenario, kilometre-sized planetesimals form by subsequent collisions of preplanetesimals of sizes from centimetre to hundreds of metres. Pre-planetesimals are fluffy, porous dust aggregates, which are inhomogeneous owing to their collisional history. Planetesimal growth can be prevented by catastrophic disruption in pre-planetesimal collisions above...
متن کاملTreatment of Synthetic Textile Wastewater by Combination of Coagulation/Flocculation Process and Electron Beam Irradiation
Introduction: Textile wastewaters from dyeing and finishing processes are heavily polluted with dyes, textile auxiliaries and chemicals and have a broad range of pH, high COD concentration and suspended particles. In this study, the efficiency of color and turbidity removal from synthetic textile wastewater samples were investigated by combined process of coagulation/ flocculation and electron ...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کامل